Online Fault Detection and Diagnosis of Complex Systems Based on Hybrid Component Models
نویسنده
چکیده
Up to now model-based online fault detection and diagnosis is rarely applied in process automation and chemical industries. The main reason is the big effort, which is necessary to develop a comprehensive model for a technical system under various circumstances. However the growing complexity of plants and facilities requires increasingly the use of formal methods to analyse and monitor the system behaviour. In this paper a fault detection and diagnosis method based on qualitative models and combined with dynamic models is proposed. The method is component-oriented. A basic feature of the concept is its ability to build automatically clusters of qualitative and dynamic components, which can be reused as single components. An application example of a three-tank-system shows that such kind of models, the so called hybrid models, are capable of solving fault detections and diagnosis problems.
منابع مشابه
Online Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines
Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملA Robust Method for Hybrid Diagnosis of Complex Systems
The AI model-based diagnosis community has developed qualitative reasoning mechanisms for fault isolation in dynamic systems. Their emphasis has been on the fault isolation algorithms, and little attention has been paid to robust online detection and symbol generation that are essential components of a complete diagnostic solution. This paper discusses a robust diagnosis methodology for hybrid ...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001